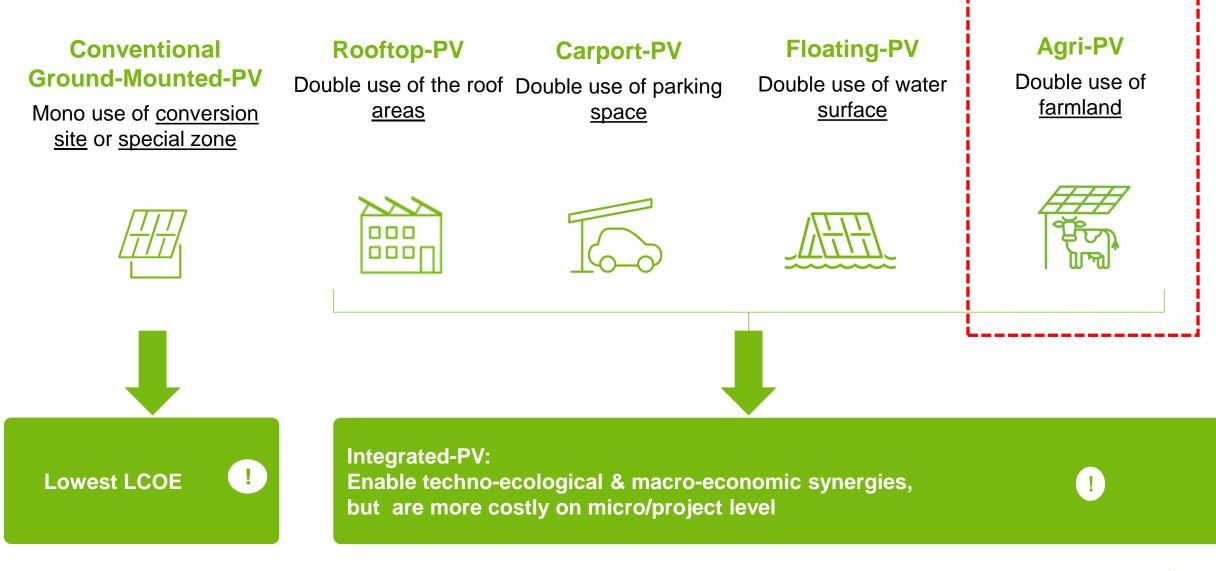


Erfahrungswerte aus der Agri-PV-Projektentwicklung

PV auf Agrarflächen im Einklang mit Landwirtschaft und Naturschutz

Stephan Schindele, Head of Product Management Agri-PV, BayWa r.e. AG BayWa r.e. SolarSummit 2023, Munich, 2023/05/24

- Definition of Agri-Photovoltaics (Agri-PV)
- 2 Learning by Doing: Agri-PV References by BayWa r.e.



The Future (of Utility-scale PV) is Agri-PV

1

Definition of Agri-Photovoltaics (Agri-PV)

Where does the idea of combining PV with agriculture come from?

1981," Kartoffeln unter dem Kollektor", Adolf Goetzberger and Armin Zastrow (Fraunhofer ISE)

"Livestock farming could also be very attractive in some regions. Sheep, deer or even cattle could be grazed there, if only the substructure of the collector is made stable enough."

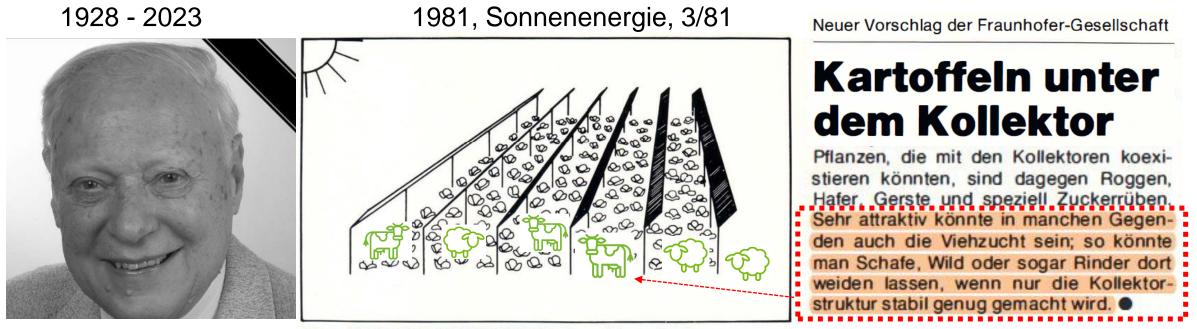


ABB. 1 SKIZZE EINES KOLLEKTORFELDES mit angehobenen Kollektoren

Definition of Agri-PV PV-Diffusion on Farmland in Harmony with Agriculture and Nature Conservation

Poly-crises demanding multi-functional land-use: energy only is not enough!

- Since 1981, the original idea of "dual harvest" from Goetzberger/Fraunhofer ISE has evolved
- Today, Agri-PV is...
 - ...not "only" diminishing land-use competition \rightarrow there is enough farmland available for utility-scale PV
 - ...considering the Food-Energy-Water-Biodiversity Nexus
 - ...integrating stakeholders into project implementation and operation \rightarrow balancing interest between three sectors
 - ...providing economic, ecological, and social value added on local and macro-economic level
 - ...enhancing the level of sustainability in the farming <u>and</u> PV sector
 - ...increasing the farmer's resilience by facilitating their climate change adaptation & mitigation strategy: income diversification
- Long-term policy trend: multifunction land-use is stimulated, monofunctional land use is de-stimulated
 - Overcome silo-thinking, leverage synergies of two/three sectors, easier approval process in permitting, more funding...
 - So what is the problem? Change management, policy-learning, urgency, growing industry, priorities, complexity,...
- Reality check: is Agri-PV a business opportunity? What is the LCOE increase of Agri-PV compared to ground-mounted PV?

Overview PV Applications on Farmland & Comparative LCOE Analysis

		LCOE in €- ct/kWh	LCOE increase in %	Type of PV Application on Farmland	Target	Standard
Level of PV-GM Technology Adaptation (Overhead, InterSpace, Module-Technology, Coating)	+ Very High	10,4	+ 60	Solar Greenhouse Fruitvoltaic Pome & Stone		
	+ High	9,1	+ 40	Fruitvoltaic Berry Chickenvoltaic Avian Influenca Protection Cow-, Fish-, Shrimpsvoltaic Peatland PV	Food-Energy- Water- Biodiversity Nexus	Agri-Standard Eco-Standard
	+ Low	7,8	+ 20	Cropvoltaic Hayvoltaic		
	None	6,5	0	SolarGrazing Sheep, Rabbit, Chicken SolarPollinator Biodiversity PV		Agri-Standard Eco-Standard
	- Low	5,2	- 20	Conventional GM-PV	max. PV-Output	Built-up Area

r.e.think energy 🛛 📮 🗖 = Technically Ground-mounted PV, but incl. SolarGrazing, SolarPollinator, Biodiversity measurements; Legal aspects are challenge

BayWa r.e. AG, 05/2023 7

Learning by Doing: Agri-PV References by BayWa r.e.

BayWa r.e. solutions in the field of Agri-PV implementation

Fruitvoltaics Hay- & Cropvoltaics **Rangevoltaics Biodiversity-PV** SolarGreenhouse **Overhead Overhead/Interspace** Interspace Interspace **Controlled Atmosphere** Examples: Examples: Examples: Examples: Examples: "Berries" "Pome & Stone" "Animal Husbandry" "Pollinator" "Nursery & Herbs" "Cereals & Vegetables & Hay"

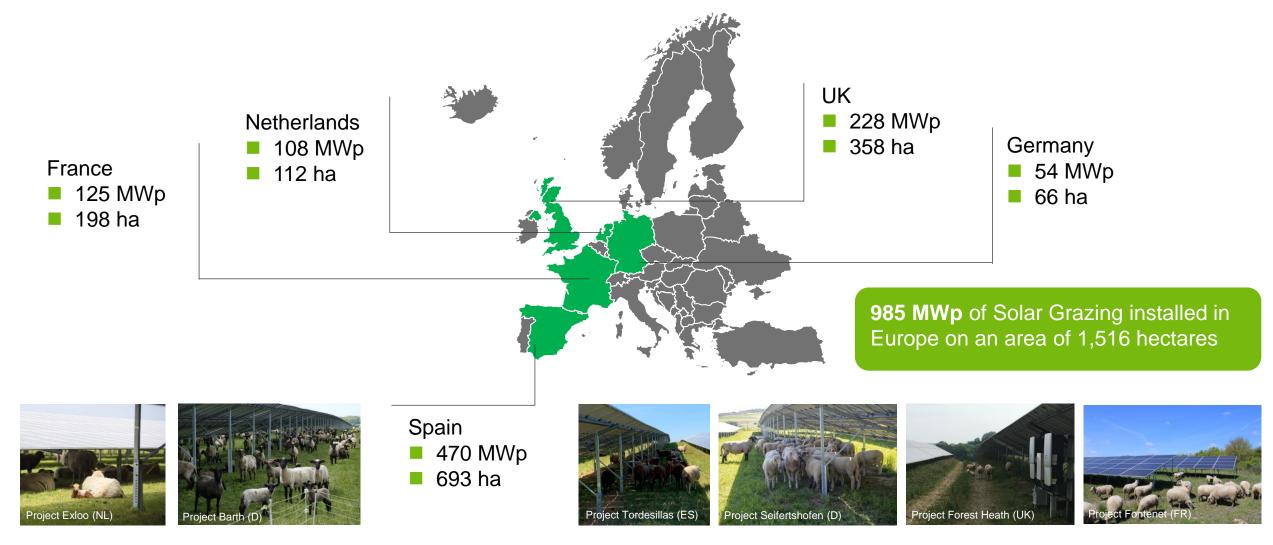
Main Challenges in Agri-PV Project Development

- **Capacity building:** establish the "Varieties of Agri-PV" in all functions, e.g. PD, EPC, PM, Legal, MKTG, MGMT, Sales, ...
- **Stakeholder engagement:** cross-sector collaboration demands coordination, e.g. farming, environment, permitting, policy,...
- **Quality assurance:** capacity building in PD, process standardization & optimization, lessons learned, knowledge mgmt., ...
- **Business & market intelligence:** knowledge transfer to countries, new organization structures, tech-adaptation, strategy,...

Learning by Doing: 13x Fruitvoltaics, 2x Cropvoltaics, 1x SolarGreenhouse / end of 2023 10x in the Netherlands & 3x in Germany & 2x in Austria & 1x in Spain

r.e.think energy

Learning by Doing: 13x Fruitvoltaics, 2x Cropvoltaics, 1x SolarGreenhouse / End of 2023 10x in the Netherlands & 3x in Germany & 2x in Austria & 1x in Spain


- **9x Fruitvoltaics Berries:** Raspberry, Strawberry, Blackberry, Blueberry, Red Currant
- **4x Fruitvoltaics Pome & Stone Fruite:** Apple, Pear, Cheery, Plum
- 2x Interspace/Cropvoltaics
- 1x SolarGreenhouse
- 2x Cross-Segment
 - Power Solution for RWA: PJ Pöchlarn (A)
 - Solar Distribution for LVWO Weinsberg: PJ Weinsberg (D)
- **2x EPC 3rd Party Sales:** We offer our Agri-PV solutions Turn-key Ready to 3rd Party Customers in Farming & Energy Sector

41 MWp of Fruitvoltaics, SolarGreenhouse, Cropvoltaics

Water-Harvesting with PV-modules

Food-Energy-Water-Biodiversity Nexus

Learning by Doing: 34x SolarGrazing with Sheep Projects in Europe / End of 2023 7x in France & 4x in the Netherlands & 8x in Germany & 10x in UK & 5x in Spain

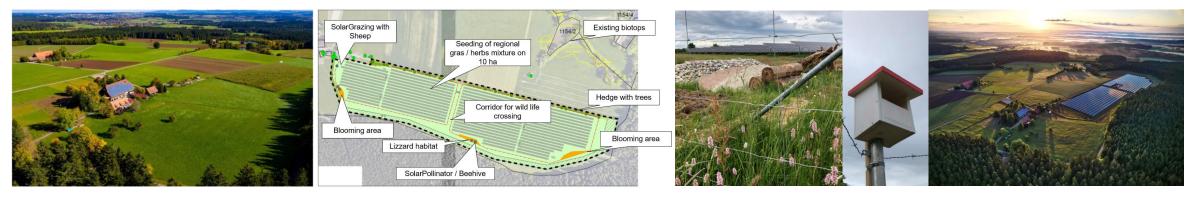
r.e.think energy

Learning by Doing: 2x Biodiversity-PV/SolarPollinator / End of 2023 1x in Mexico & 1x in Germany

Example Mexico

Stakeholder inclusion: Health, Safety & Environmental Regulations, Social & Legal Adaptation of PV-Project

- 200 MWp installed PV capacity
- 400 beehives installed within project area
- 20 families operating beehives (approx. 20 beehives/family)
- 48 Kg of honey/beehive/year = 960 Kg/year/family
- 19.200 Kg of honey/year on project area
- Additionally 71 hectares of reforestation next to project including 5 native species attracting pollinators



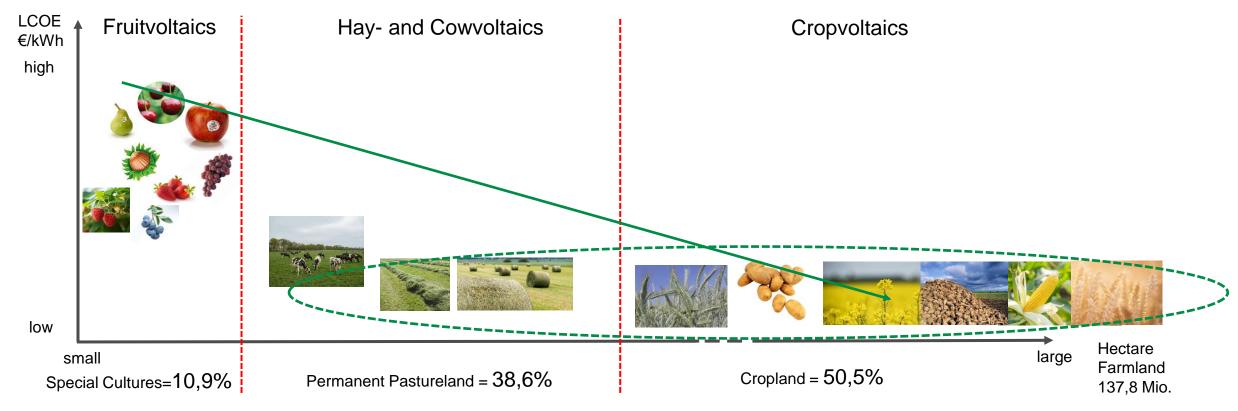
Learning by Doing: 2x Biodiversity-PV/SolarPollinator / End of 2023 1x in Mexico & 1x in Germany

Example Germany:

Stakeholder inclusion: project development together with local Nature and Biodiversity Conservation Union (NABU)

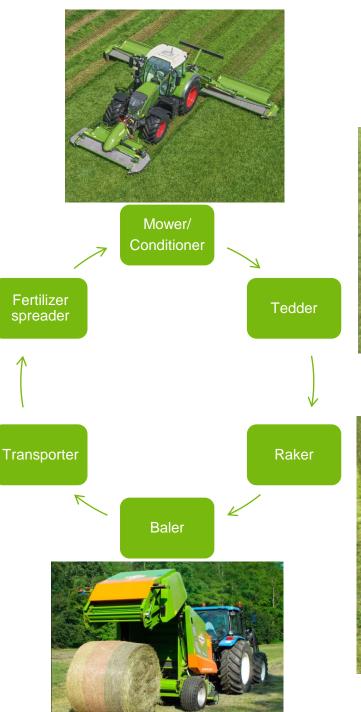
- 9 MWp PV and 4 MWh BES
- BioDiv-Quality of set a site area vs. BioDiv-PV (not Agri before vs. BioDiv-PV)
- Goal of family owning the farmland: restore damaged ecosystem, increase biodiversity, climate protection
- 10x biodiversity measurements integrated into solar park together with local environmentalist group NABU
 - Blooming area
 - Lizard habitat
 - Regional seeding

- SolarPollinator / Beehives
- SolarGrazing with Sheep
- Hedges with local trees
- Corridor for wild life crossing


- Soil degradation neutrality
- Bird housing
- Upgrade of existing biotops

The Future (of Utility-scale PV) is Agri-PV

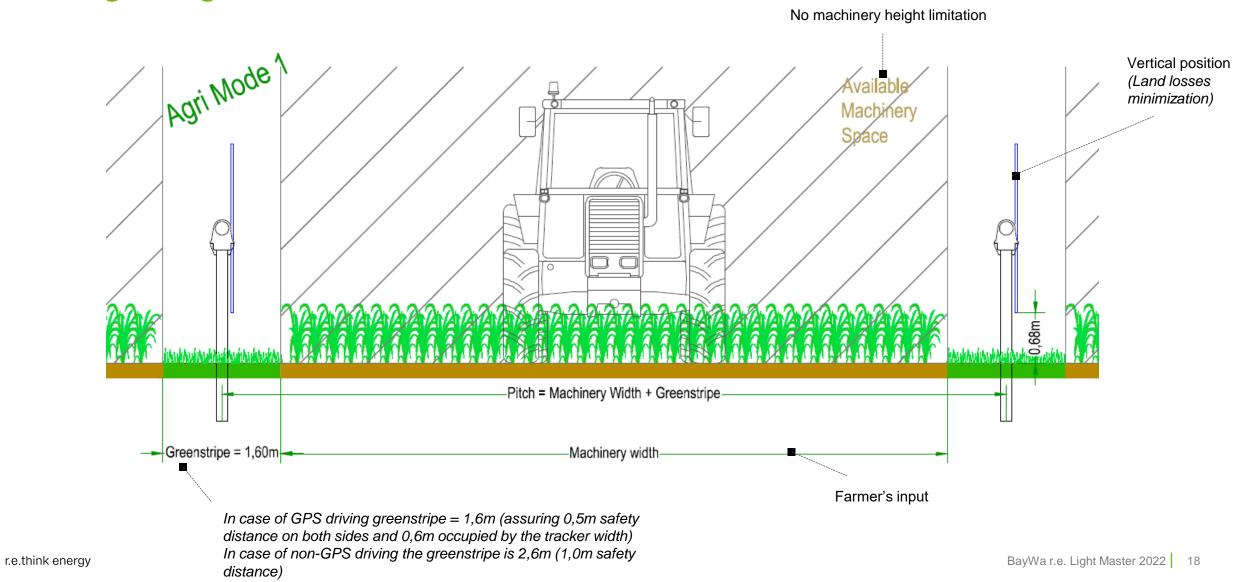
Agri-PV Area Potential in EU: Special Cultures, Permanent Pastureland, Cropland Relation LCOE to Area Potential

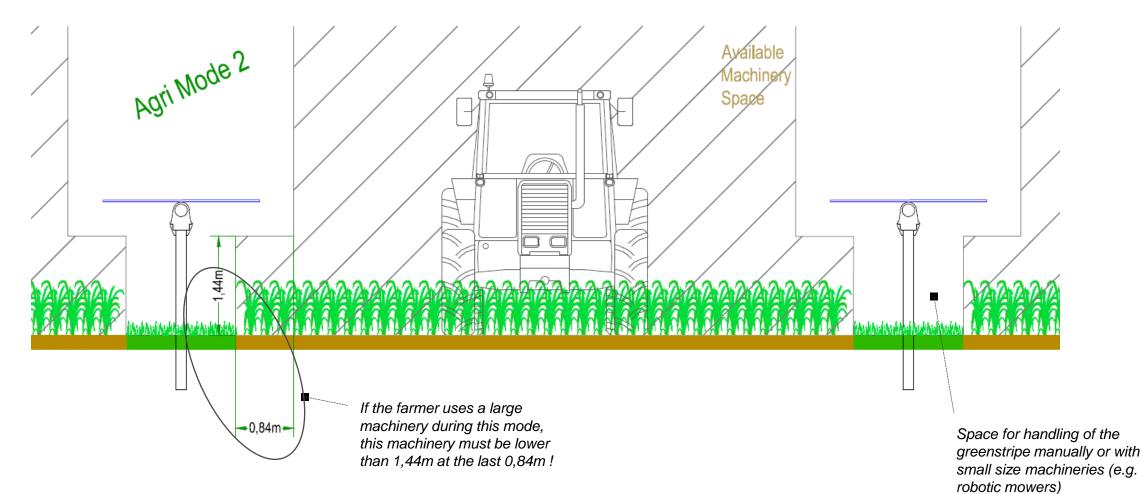


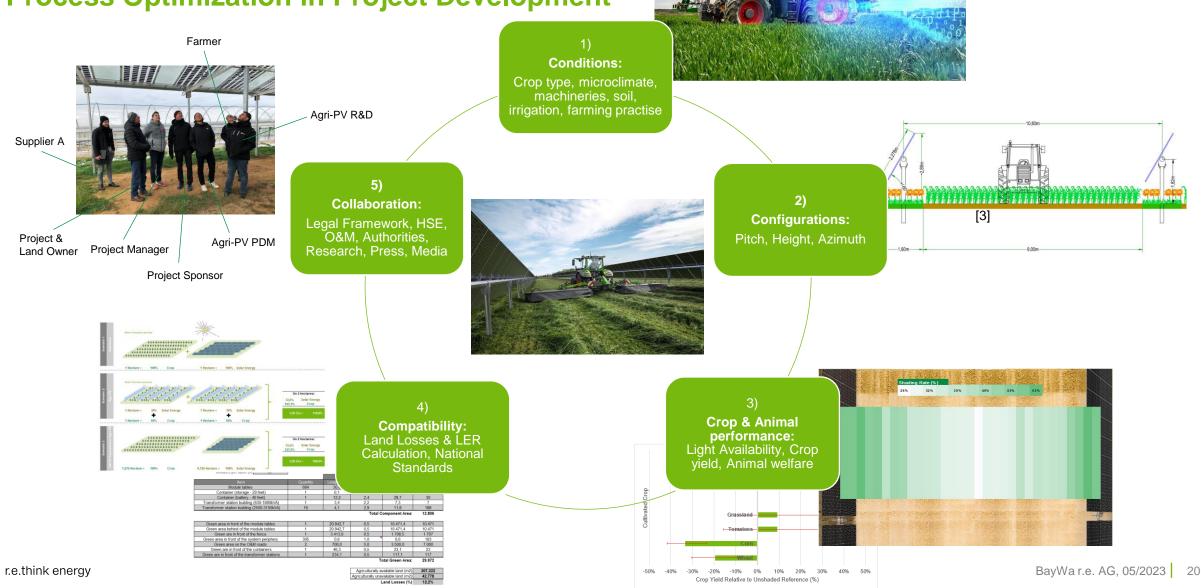
Conclusion:

- Great business opportunity for low LCOE, large area potential: Cropvoltaics, Hayvoltaics, SolarGrazing, Biodiversity-PV
- Fruitvoltaics, Cowvoltaics, and SolarGreenhouse business opportunity only, if financial support mechanism is in place
- BUT: we/solar sector must have the motivation to learn & find comprise with farming sector and vice versa: expl. Hayvoltaics r.e.think energy
 BayWa r.e. AG, 05/2023
 16

Typical machineries Example: Hay production






Configurations: Operational Guidelines Tracking 1P: Agri Mode 1

Configurations: Operational Guidelines Tracking 1P: Agri Mode 2

Quality Assurance: Agri-PV 5C-Tool Process Optimization in Project Development

© BayWa AG

- Energy only is not enough!
- Agri-PV is very divers: setting the right priorities
- Farming and PV business is kept separately: two independent business cases on one area
- Capacity learning and knowledge management needs coordination: process optimization 5C-Tool
- Agri-PV solutions with low LCOE: subsidy free
- Agri-PV solutions with higher LCOE: need funding
- Many governments stimulate multifunctional land-use
- Agri-PV diffusion is only at the introduction phase, growth phase is starting in years 2025 2030

Thank you

Stephan Schindele

stephan.schindele@baywa-re.com

BayWa r.e. Solar Projects GmbH Freiburg Office D-79098 Freiburg i. Brg., Germany Telephone +49 761383686-232 www.baywa-re.com

Copyright

© Copyright BayWa r.e. AG, 2022

The content of this presentation (including text, graphics, photos, tables, logos, etc.) and the presentation itself are protected by copyright. They were created by BayWa r.e. AG independently.

Any dissemination of the presentation and/or content or parts thereof is only permitted with written permission by BayWa r.e. Without written permission of BayWa r.e., this document and/or parts of it must not be passed on, modified, published, translated or reproduced, either by photocopies, or by others – in particular by electronic procedures. This reservation also extends to inclusion in or evaluation by databases. Infringements will be prosecuted.

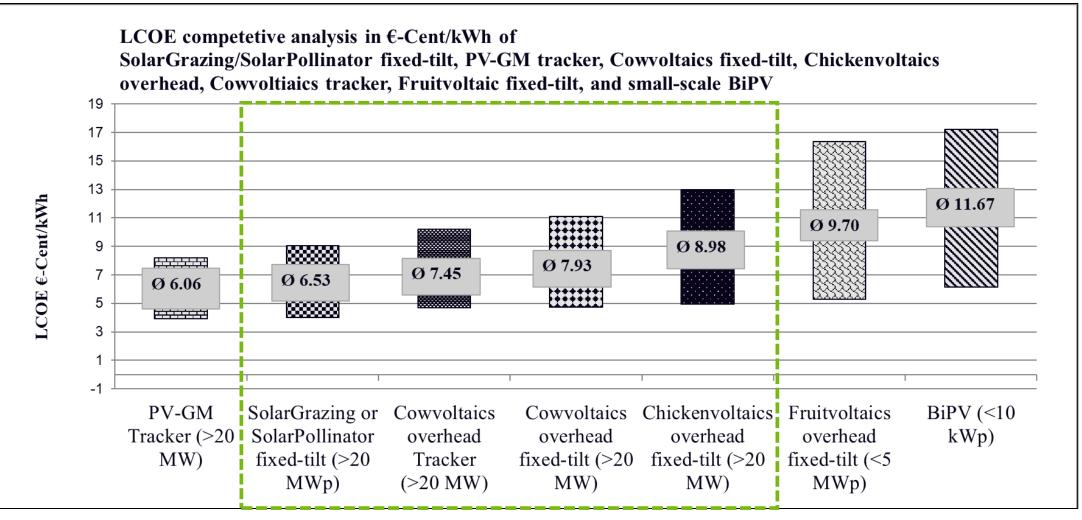
Techno-Economic Analysis of Rangevoltaics Data (Part 1/2)

Project size: 20 MWp; Location: Central France

	PV-GM Tracker (>20 MW)		SolarGrazing or SolarPollinator fixed- tilt (>20 MWp)		Cowvoltaics overhead Tracker (>20 MW)		
	Minimal assumption	Maximum	Minimal assumption	Maximum	Minimal assumption	Maximum	
CAPEX (EUR/kWp)	800	1100	750	1000	975	1400	
Interest rate (%)	5,00%	5,00%	5,00%	5,00%	5,00%	5,00%	
Operating time (a)	25	25	25	25	25	25	
OPEX (EUR/kWp/a)	12	16	11	15	13	18	
Orientation	East-West		South		East-West		
kWh/kWp/a	1750	1150	1600	950	1750	1150	
Capital costs per year (EUR/kWp/a)	57	78	53	71	69	99	
LCOE (ct/kWh)	3,93	8,18	4,01	9,05	4,70	10,20	

■ Cowvoltaics tracker is higher than standard tracker and cabling more secure → higher CAPEX, but same power yield

Techno-Economic Analysis of Rangevoltaics Data (Part 2/2)


Project size: 20 MWp; Location: Central France

		cs overhead (>20 MW)	Chickenvoltaics overhead fixed-tilt (>20 MW)		Fruitvoltaics overhead fixed-tilt (<5 MWp)		BiPV (<10 kWp)	
	Minimal assumption	Maximum	Minimal assumption		Minimal assumption	Maximum	Minimal assumption	Maximum
CAPEX (EUR/kWp)	900	1250	950	1500	1000	1550	1100	1750
Interest rate (%)	5,00%	5,00%	5,00%	5,00%	5,00%	5,00%	6,00%	6,00%
Operating time (a)	25	25	25	25	25	25	25	25
OPEX (EUR/kWp/a)	12	17	12	17	11	17	12	18
Orientation	South		South		East-West		South	
kWh/kWp/a	1600	950	1600	950	1550	900	1600	900
Capital costs per year (EUR/kWp/a)	.) 64	89	67	106	71	110	86	137
LCOE (ct/kWh)	4,74	11,13	4,96	12,99	5,29	14,11	6,13	17,21

Compared to Fruitvoltaics, Rangevoltaics has lower LCOE, & larger area potential: positive cost-benefit ratio for policy makers

- Higher CAPEX (due to light transmitting PV module), but lower PV yield (due to east-west conficuration)
- Integrating-PV on roof-tops and buildings (top-priority in many markets) is more costly than Agri-PV/Rangevoltaics

Techno-Economic Analysis Results

Rangevoltaics